Yiddish of the day

1 Zol vaskn vi a 'll jop kll Sks
tsibile miter kup in = jc.u 85823'3 k
der erd " 370 703 j'b Dkp

Direct Sums

is the set
$$V_{i} \times V_{i} \times \cdots \times V_{k}$$

Rem K: This is a vector space!
• All time: $(v_{i}, v_{k}) + (w_{i}, w_{k}) = (v_{i}, w_{k})$
 $V_{i}, w_{i} \in V_{i}$
• Sector mult: $d(v_{i}, v_{k}, \dots, v_{k}) = (dv_{i}, \dots, dv_{k})$
• O vector : $(O_{i}, O_{i}, \dots, O_{k})$
 $F^{n} = FO \sim OP = \sum_{i=1}^{n} \binom{v_{i}}{v_{i}} + \frac{v_{i}}{v_{i}} + \frac$

un un un this mup IT is subjective
Moreany, since vour the ! u, we this mup IT is injective.
Marane (3), Since IT is iso, its subjective. So every ve V
can be expressed as
$$V = T(u, w) = u + w$$
. In $V = U + w$
If $z \neq 0$ elen we then $T(Z, -Z) = 0 \longrightarrow$ since T injective
How to get Direct Sims?
Det: Let WSV be subspace. Then a complimentary subspace for
W is another subspace W' st
 $V = W \oplus W'$

$$\pi(qv) = \pi(v) + \pi(v)$$

$$\pi(qv) = \alpha(v)$$

$$\pi(qv) = \alpha(v)$$

$$\pi(v) = 0$$

$$\pi(v) = 0$$

$$\pi(v) = 0$$

$$\pi(v) = 0$$

Pt) We define
$$\tilde{T}$$
: $VW - 2E$ by
 $\tilde{T}(CVI) = T(V)$
Suppose $CVI = [V']$. we'll chow that $\tilde{T}(UVI) = \tilde{T}(UVI)$
Sinc $(VI = [V'])$ we have that $V = V = W$
then $T(V - V') = D$
 $V = 2 T(V) = T(V')$
 $T(V) - T(U')$ is $\tilde{T}(UVI) = \tilde{T}(V'I)$
And \tilde{T} is linear, since $\tilde{T}(UV, + VVI) = \tilde{T}(V, + VVI)$
 $= \tilde{T}(VI) + \tilde{T}(VVI)$
 $\tilde{T}((CVI)) = T(VI) = \sigma T(V)$
 $\tilde{T}(VI) = T(VI) = \sigma T(V)$

Consequences

Thrm: (1st isomorphism thrm) T'V -> 2 be linear Then thure is isomorphism F: VIKAT 2 im(T) Given T.V->Z this by the three about, we get la well defined mup well-defined F: V/Ku(T) -> Z Such that by prunius hum F([v])= T(v], Now lets check F is injective, Assume T(CV))=0

